- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Edwards, Kyle_F (3)
-
Schvarcz, Christopher_R (3)
-
Steward, Grieg_F (3)
-
McBeain, Kelsey_A (2)
-
Bedi_de_Silva, Anamica (1)
-
Polson, Shawn_W (1)
-
Thomy, Julie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Edwards, Kyle_F; McBeain, Kelsey_A; Schvarcz, Christopher_R; Steward, Grieg_F (, Limnology and Oceanography Letters)Abstract Viruses infecting aquatic microbes vary immensely in size, but the ecological consequences of virus size are poorly understood. Here we used a unique suite of diverse phytoplankton strains and their viruses, all isolated from waters around Hawai'i, to assess whether virus size affects the suppression of host populations. We found that small viruses of diverse genome type (3–24 kb genome size, 23–70 nm capsid diameter) have very similar effects on host populations, suppressing hosts less strongly and for a shorter period of time compared to large double‐stranded DNA viruses (214–1380 kb, 112–386 nm). Suppressive effects of larger viruses were more heterogeneous, but most isolates reduced host populations by many orders of magnitude, without recovery over the ~ 25‐d experiments. Our results suggest that disparate lineages of viruses may have ecological consequences that are predictable in part based on size, and that ecosystem impacts of viral infection may vary with the size structure of the viral community.more » « less
-
Bedi_de_Silva, Anamica; Polson, Shawn_W; Schvarcz, Christopher_R; Steward, Grieg_F; Edwards, Kyle_F (, Environmental Microbiology)Abstract Marine microbes are important in biogeochemical cycling, but the nature and magnitude of their contributions are influenced by their associated viruses. In the presence of a lytic virus, cells that have evolved resistance to infection have an obvious fitness advantage over relatives that remain susceptible. However, susceptible cells remain extant in the wild, implying that the evolution of a fitness advantage in one dimension (virus resistance) must be accompanied by a fitness cost in another dimension. Identifying costs of resistance is challenging because fitness is context‐dependent. We examined the context dependence of fitness costs in isolates of the picophytoplankton genusMicromonasand their co‐occurring dsDNA viruses using experimental evolution. After generating 88 resistant lineages from two ancestralMicromonasstrains, each challenged with one of four distinct viral strains, we found resistance led to a 46% decrease in mean growth rate under high irradiance and a 19% decrease under low. After a year in culture, the experimentally selected lines remained resistant, but fitness costs had attenuated. Our results suggest that the cost of resistance inMicromonasis dependent on environmental conditions and the duration of population adaptation, illustrating the dynamic nature of fitness costs of viral resistance among marine protists.more » « less
An official website of the United States government
